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Integration Strategies for the Reactive Scheduling System

David Wyn Thomas
Guest Researcher, Manufacturing Systems Integration Division

MSI Research Institute, Loughborough University

Abstract

Shop Floor operations can be optimized by scheduling applications that not only create an initial

schedule but also allow feedback from data collection systems to enable re-scheduling. Interfaces

required to integrate the various commercial applications within such a reactive system are being

developed at the National Institute of Standards and Technology (NIST). This report describes how
standards-based, distributed object technology has been used to implement some of those interfaces.

1. Introduction to the Reactive Scheduling System.

NIST has been developing a Reactive Scheduling System (RSS), which is capable of modifying the

existing schedule based on feedback from the shop floor, for a number of number years. The functional

components that have been identified within the RSS are shovra in Figure 1. These high level

components may themselves be made up of sub-components. Information models to describe the status

of the shop floor in terms a scheduler can understand have been defined previously'.

Prior to the work covered in this document all integration and inter-component communication was

implemented using files. The Scheduler component produced a description of a schedule from new
order information, routings, and the current state of the shop floor. This was stored in a file that the

Dispatcher then repackaged into chronological work orders, called jobs, for each available resource. A
job specifies a machine resource to execute

a production step on a group of parts, called

a load. The Shop Floor simulator read this

file as input and simulated the execution of

the jobs to produce the loads. Status

reports on the progress of loads and state of

resources were stored in a file that the

Status Manager periodically read. No
detailed specification or implementation of

the System Manager had been done. The

implementation was very static and

environment-dependent. The components

were tightly coupled both to each other and

to the environment in which they were

located. Both the file location and the host

machine on which a component executed

had to be explicitly specified by any other component that wanted to communicate with it. If a

component’s physical location or host machine changed, any component that interacted with it would

also need to be modified to maintain communication.
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Information was transferred between components via text strings that were written to and read from

files. An example text string passed between the Shop Floor Simulation and the Status Manager is

shown below.

change_resource,"00;30:18","Fix_R", current_state, "busy", currentJoad,"L01Or0r

Relaying information between communicating components via text strings required the components to

parse the strings and extract the information contained in them.

This document describes how distributed object technology has been used to replace the file-based

implementation to produce a loosely coupled component system.

2. Introduction of Distributed Object Technology Communication Mechanisms

Object-oriented design and analysis methodologies^ can be applied to the Reactive Scheduling System.

The components shown in Figure 1 can be mapped to objects, and the messages that are passed between

the components can be mapped to methods and attributes belonging to the objects. Using the object-

oriented approach facilitates the separation of the interfaces from a component and implementation of

that component. The well-defined interface is publicly available to all other components within the

system, while the implementation remains encapsulated within the component.

Figure 2: Client-Sever relationships of components

Distributed Object Technology extends object-oriented programming to enable objects that are

physically remote from each other to interact. Communicating distributed objects may reside in

heterogeneous environments in terms of host computer, operating systems, or networks. A change of

implementation (e.g., using a different shop floor simulator) will require alterations only to the internals

of the component. No alterations to the well-defined interface are necessary. Other communicating

components will, therefore, be unaware that the internal implementation of any particular component

has been changed.

To achieve this level of flexibility, a definition of the role each component performs with respect to the

other entities within the system is required. Figure 2 outlines the dominant communication relationships
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between the components in terms of the client-server architecture^. A client makes calls (requests) on a

server. Each component can be either client or server to other components in the system, or both.

Figure 2 shows that the Status Manager is a client of the Scheduler, and a server for the Shop Floor and

the System Manager.

The components within the Reactive Scheduling System run as processes on remote host machines.

Traditionally, remote Inter-Process Communication (IPC) has been accomplished using files or a low-

level mechanism such as a socket interface. However these mechanisms for remote IPC tend to produce

processes that are tightly bound to each other. A change in one process will often require subsequent

changes in the remote communicating processes.

The introduction of a broker mechanism" into the system removes the distribution details from the

individual components and places them in an external request broker component. This enables loose

coupling both to other components and the host environments. The Common Object Request Broker

Architecture (CORBA)^ specification enables components to communicate to each other using

distributed object technology. We have implemented a CORBA-compliant, distributed-object, system

using the Orbix® * product from Iona Technologies^.

Figure 2 shows the predominant information and control relationships among the manufacturing

components that make up the RSS. However, a server may at times wish to notify a client

Figure 3: Class diagram of the RSS components.

asynchronously that an event has occurred. A distributed callback mechanism has been used to enable

this behavior^ that executes a method within the client component when such an event occurs in the

server.

From the definitions of the components and their relationships to one another, a class diagram of the

Reactive Scheduling System can be constructed. The Unified Modeling Language (UML)^, an object-

oriented modeling language has been used for this purpose.

^ A distributed callback mechanism is a simple approach to enable bi-directional asynchronous client-server (peer-

to-peer) behavior. Details of the Orbix implementation can be found in the OrbixWeb Programming Guide and

also on the Iona web pages (http://www.iona.com') . Iona’s OrbixTalk is an implementation of the COREA Event

service.
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The UML class diagram of the system components is shown in Figure 3. An iterative approach to the

introduction of distributed object technology has been used within the Reactive Scheduling System.

The first implementation replaces the ASCII text files with a simple CORBA interface. The messages

contained within the text strings now pass across this interface. Currently, no information as to the type

of data passing from one component to another is explicitly held in the interfaces. However, an iterative

approach enables quick development of the CORBA wrappers with_ minimum alteration to the

application code that has already been written.

One application-oriented method that

appears in several of the classes shown in

Figure 3 is processXXXMessage, which is

used to pass the text strings from a client to a

server component. For example the Shop

Floor (client) would connect to the Status

Manager (server) and then call the

processStatiisManagerMessage method,

with a text string containing the relevant

status information as a parameter of the

method. This is shown below,

void processStatusManagerl\/lessage(in

string MessageString);

The whole Reactive Scheduling System has

been specified at this level. The components within the system that have been implemented with the

interfaces described above are detailed in the section on Implemented Components below. A richer

object-oriented interface for the components is required, where the type of data passing across the

interface is specified explicitly. This work is continuing at present at NIST’.

An example class diagram containing a richer interface for the Status Manager component is shown in

Figure 4. It demonstrates the level of interface definition that will need to be defined for all of the

components. The single processStatiisManagerMessage method of the first design iteration has been

replaced by several methods. A method is called depending on the status information that is being sent

from the Shop Floor. This will reduce the degree of parsing performed in the component itself. The

semantic content of the text string messages will be defined by an object interface, comprised of

methods with parameters.

Below we show how a change_resource status message contained in a text string in the simple Status

Manager interface will be replaced by a call to a changeResource method call on the StatusManager

object. It contains four parameters, timestamp, resource name, current state and current load.

change_resource,"00;30;18","Fix_R",current_state,"busy",currentJoad,"L010r01”

Replaced By:

void changeResource ( timestamp, resource, state, load );

^ The Unified Modeling Language is a language for specifying, visualizing, and constructing the artifacts of

software systems, as well as for business modeling. The UML represents a collection of "best engineering

practices" that have proven successful in the modeling of large and complex systems (http://www.rational.com). It

is based upon the Booch, Object Modeling Technology, and Jacobson methodologies.

StatusManager

Loads
Resources

createLoad(

)

changeLoad(

)

deleteLoad(

)

createResource(

)

changeResource!

)

deleteResource(

)

e)dsts(

)

registerShopFloorCallback(

)

registerSystemManagerCallback(

)

Figure 4: Richer Status Manager Class
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The registerCallback methods, shown in the class diagram in Figure 4, are used to create the distributed

callback mechanisms introduced above. These enable servers to call methods on objects located in

clients. Tools are available that can be used to generate CORBA Interface Definition Language (IDL)-

compliant interfaces for each of the components of the Reactive Scheduling System, from the UML
class diagrams.

3. Developing a CORBA Wrapper for the Components

The IDL definitions of the interfaces of the components of the Reactive Scheduling System are

converted into code "stubs" by an IDL compiler. The code stubs are used in implementation of the

component wrappers. A wrapper enables

applications that do not have CORBA interfaces to

communicate with other distributed components that

have CORBA-compliant interfaces. The output of

the IDL compiler will be dependent on the

programming language in which the wrapper is to be

written. This could be C-H-, Java, or Smalltalk.

Figure 5 shows the files generated by the IDL
compiler during the wrapper development from the

UML class diagrams to the C-H- source code. The

Orbix IDL to C-H- compiler generates two sets of

files.

The implementation stubs contain the application-

specific CORBA methods that call the underlying

Orbix® libraries. The developer should not amend
these.

The generated implementation skeletons contain an

outline of the class and methods for an object that

will be implemented within the server. The

developer completes this class by writing the code Figure 5; Files produced for wrapper development

that will be executed when a client makes a call on

an object of this type.

4. Implemented Components

This section describes the work that has been completed within the initial implementation of the

CORBA-based Reactive Scheduling System (RSS). The components for which a CORBA interface has

been implemented are the Status Manager, the Shop Floor Simulator, and the Dispatcher. An
implementation diagram of these components is shown in Figure 6.

The rest of this section outlines, in greater detail, the development of each of the current

implementations of these components.

4.1 Status Manger

The current implementation of the Status Manager component has been developed in-house at NIST
using Visual Basic® . State information arriving at the Status Manager from the Shop Floor is stored in

UML to IDL

Orbix®

IDL to C++

.ih i.cpp

UML class diagram

CORBA object

interface definitions

C-H- implementation

skeletons

hh C.cpp S.cpp

_/

C-H- implementation

stubs
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a database via an Open Database Connectivity (ODBC) link. To provide a CORBA interface to this

component a CORBA/ActiveX gateway was required to enable ActiveX® objects in the Visual Basic®

Status Manager to be accessible to remote CORBA client processes. To facilitate this, the IDL compiler

produces a binary file containing all of the CORBA/ActiveX translation functionality. The produced

binary is pasted onto a Visual Basic® form in the server process to provide access to this functionality.

Figure 6: RSS Implementation Diagram

4.2 Shop Floor Simulator

The current Shop Floor Simulator implementation uses the Deneb Robotics Quest® simulation tool

running under IRIX5.3® on a Silicon Graphics Computer® . The CORBA wrapper that connects the

simulator with the rest of the components in the Reactive Scheduling System is implemented in C-H-

and compiled with the native SGI® compiler. The Shop Floor wrapper communicates with Deneb
Robotics Quest® via a socket interface with the wrapper as the server and Deneb Robotics Quest as the

client. Deneb Robotics Quest® requires a special message format for socket communications.

Byte Contents:

1-5 Length of message. (ASCII Text)

6-N Actual message.

The first 5 bytes read from the socket contain the length of the remaining message, the actual message

the user wishes to pass over the socket. The message length is a right justified character string with

leading spaces.
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The wrapper executes an event handler that dispatches incoming events from both Deneb Robotics

Quest (through the socket interface) and from the other remote communicating components within the

Reactive Scheduling System (through the CORBA interface).

4.3 Dispatcher

The current implementation of the Dispatcher was developed in-house at NIST, and written in Java. It

is presently a Java application as opposed to an applet and therefore cannot be accessed through an

Internet browser. The Iona OrbixWeb® IDL to Java compiler, has been used to create the CORBA
stubs and skeleton files.

5. Further Work

Development of the internal implementation of all of the components within the Reactive Scheduling

System is continuing at NIST. The next step is to allow new orders to enter the system, delays in the

completion of tasks, and the breakdowns of machine. Once this is completed, a new component will be

added called the monitor. Its main functions will be to predict the impact of these types of events on the

current schedule, and to determine when a new schedule is needed. Some type of Ai-based or agent

system is envisioned.

Work on the definition of the interfaces between the components will continue in three areas;

Complete the initial iteration of a CORBA-based distributed object Reactive Scheduling System.

The Scheduler and System Manager components are yet to be implemented.

Define and develop a richer CORBA interface for each of the components within the Reactive

Scheduling System.

Replace existing applications with other s that have the same functionality.

These activities will require further investigation into the functional role of each of the components and

the communication required between them.

* DISCLAIMER:
Certain commercial software and hardware products are identified in this paper. This does not imply

approval or endorsement by NIST, nor does it imply that the identifiedproducts are necessarily the best

availablefor the purpose.
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